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a b s t r a c t

Dynamics of a model mechanical system with ‘fast and strong’ oscillations of the damping

coefficient has been analyzed by Fidlin (2005) [6]. He has performed the asymptotic

analysis of the equation of motion of this system to conclude that these oscillations

produce variation in its effective stiffness. The present paper continues analysis of

out in his asymptotic solution. The results are compared with the results of the solution of

the classical Mathieu equation, which features fast oscillations in the stiffness of a system.

The influence of stiffness and damping modulations on the stability of motion of

corresponding oscillators is studied. Several engineering applications modeled by the

system with oscillations of the damping coefficient are introduced. Analysis of motion of

this system exemplifies how the method of direct separation of motions (Blekhman (2000)

[7]) can be applied for solving equations with fast oscillating terms depending on the

velocities. Some features of the application of the method of direct separation of motions

in this case and in the similar ones are highlighted.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Oscillators with one degree of freedom (a linear oscillator, nonlinear oscillators—the Van der Pol oscillator, the Duffing
oscillator, the Mathieu oscillator and others) are the generic models in the modern theory of oscillations (see e.g. [1–4]). Many
papers are devoted to analysis of their behavior. Various mechanical systems and effects can be described and studied with
their help. To this end, it is rather surprising that the one-degree-of-freedom mechanical system with modulation of the
dissipation coefficient has not yet gained much attention in the literature. It has been introduced in the paper [5] by Fidlin. We
believe that this mechanical system is as generic as those already listed, and we call it hereafter the Fidlin oscillator.

In monograph Fidlin [6] devotes much attention to the systems with strong general high frequency excitation, which
can be described by the equation

€x ¼ Fð _x, x, t, tÞþoFð _x, x, t, tÞ

where the dot indicates total differentiation to time t, x9t = 0=x0, _x9t ¼ 0 ¼ v0, x0=O(1), v0=O(1), t=ot is ‘fast’ time, and the
frequency o is much larger than one.

The general mathematical approach to the asymptotic analysis of motion of mechanical systems with strong high
frequency excitation has been devised by Fidlin. This asymptotic approach, based on the generalized averaging, is relatively
cumbersome and not transparent for its physical interpretation.
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As an illustration, Fidlin has examined the case of strong high frequency oscillation of the dissipation coefficient, i.e. the
following equation:

€xþb _xþx¼ ao _x cosot (1)

He has emphasized that this example is purely mathematical.
Eq. (1) has been asymptotically solved assuming that the parameters a and b are of order one, whereas the frequency is

much larger than one [5]. As a result, the following equation of ‘slow’ motion has been obtained:

€Xþb _Xþ I2
0ðaÞX ¼ 0 (2)

Here X=/xS—is the ‘slow’ component of motion, /yS designates averaging in the period 2p on fast time variable
t=ot, I0(a) is the modified Bessel function. According to [6], solutions to Eqs. (1) and (2) are asymptotically close to each
other for the time interval t=O(1). In Fidlin assumptions the point x=0 is always stable for Eq. (1), so x and _x are bounded.

Eq. (2) is remarkable in two aspects: 1) under adopted assumptions on the orders of magnitudes of the parameters
involved, the zero solution X=0 is inherently stable. 2) Eq. (2) characterises variation in the effective stiffness of the system
generated by pulsations of the damping coefficient in the original system (1).

In the present paper, the analysis of the Fidlin oscillator is extended to a broader range of parameters by means of the
concept of vibrational mechanics and the method of direct separation of motions [7,8] (see also [9–11]). It is worth to
mention, that Fidlin believes that this method is not applicable for solving problems concerned with the strong high
frequency velocity-dependent excitation, in particular, for solving Eq. (1). Authors of the present paper show that the
method of direct separation of motions can indeed be applied for solving such problems. Thereby, the range of applicability
of the method of direct separation of motions is extended.

In the considered broader range of parameters, the behavior of the solution of the equation of the Fidlin oscillator is
compared with the behavior of the solution of the classical equation with oscillating stiffness. Several engineering
applications modeled by the equation of the Fidlin oscillator are introduced. We note that the search of these applications
has been rather challenging. All applied problems, analyzed before [7,8], did not require to account for the dependence of
fast component on slow time, as is necessary in the case of the Fidlin oscillator. Fidlin himself has believed that the
equation he has examined is interesting only from the mathematical point of view. We think that it is not the case: several
applications, although rather exotic, have already been found, and more examples will certainly appear. We also draw the
attention to the remarkable, and not yet completely understood from the physical point of view, fact, that the modulation
of the dissipation coefficient produces the increase of the effective stiffness of the system with respect to ‘slow’ loads.

Vibrational mechanics is mechanics, which should be used by an observer, who do not notice ‘‘fast forces and fast
motions’’. This observer should add so-called vibrational forces, which are calculated following certain rules, to all slow
forces exerted on a system. To this end, vibrational mechanics is similar to the mechanics of the relative motion. The ‘‘fast
motions’’ are ignored in the vibrational mechanics in the same manner as the relative motion of a system. Naturally, the
condition that forces exerted on a system and its motions can be separated on fast and slow components has to be fulfilled
for the applicability of such a conception. Mathematical formalization of this assumption and matters of its correctness are
reported in the books [7,8]. General conception of neglecting motions, including the dynamics of relative motion, is stated
in the same books. The method of direct separation of motions is efficient for obtaining expressions for vibrational forces
and compiling the main equations of vibrational mechanics. Our description implies that the reader either have read the
books [7,8], or can do so if he or she wishes. Otherwise, the present paper would become too long.

The concept of vibrational mechanics and the method of direct separation of motions facilitate solution of various challenging
problems of action of high frequency vibrations on nonlinear mechanical systems [7,8]. Distinctive features of this concept and
this method are the simplicity in application and the transparency of the physical interpretation. It is also remarkable that
approximations are involved only for solving equations of ‘fast’ motions. These approximations do not strongly affect the accuracy
of solving equations of ‘slow’ motions, because only averaged fast components are employed in their formulation.

Solving Eq. (1) by the method of direct separation of motions we assume, that its solution can be written as

x¼ XðtÞþcðt,otÞ (3)

where X—‘slow’, and c—‘fast’, 2p—periodic in dimensionless (‘fast’) time t=ot variable, with average zero:

/cðt, tÞS¼ 0 (4)

where for any h=h(t,t), T—periodic in t, we define /hðt,tÞS¼ 1
T

R T
0 hdt.

The assumption that solution of the initial equation can be sought as the sum (3) of ‘slow’ and ‘fast’ components is the
fundamental assumption of vibrational mechanics. It has been mathematically formalized in books [7,8]. In Sections 2.2
and 3, verification of this assumption is provided for the considered Eq. (1).

Following the method of direct separation of motions, we obtain equations of ‘slow’ and ‘fast’ motions in the form:

€Xþb _XþX ¼ ao/ _c cosotS (5)

€cþb _cþc¼ aoð _X cosotþ _c cosot�/ _c cosotSÞ (6)

Eq. (5) is obtained by the averaging of Eq. (1) in period 2p/o, Eq. (6)—from the condition of the correctness of the initial
Eq. (1) with expression (3) taken into account.
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2. Solving the equation of Fidlin oscillator by the method of direct separation of motions

2.1. Conventional approximate solution

Here we will solve Eq. (1) assuming, as Fidlin, that the parameters a and b are of order one, whereas the frequency is
much larger than one ob1.

In this section, we use the method of direct separation of motions in its conventional form [7,8], i.e. we solve equation of
‘fast’ motion (6) approximately, using all standard assumptions. The principle one is the following: while solving the
equation of ‘fast’ motion, it is possible to consider all involved ‘slow’ variables as constants (‘frozen’).

The periodic solution of Eq. (6) has the form of an infinite series:

c¼ B1 cosotþB2 sinotþC1 cos2otþC2 sin2otþ � � � (7)

The constant term is missing in solution (7) because c is ‘fast’, 2p—periodic in dimensionless (‘fast’) time t=ot variable,
with average zero (4).

In solution (7) we take into account only the first two terms. It will be shown later, that it is justified for ao1.
Consequently for B1 and B2 we get following expressions:

B1 ¼
1�o2

ð1�o2Þ
2
þo2b2

ao _X , B2 ¼
ob

ð1�o2Þ
2
þo2b2

ao _X (8)

With ob1, formulas (8) take the form:

B1 ¼�
a

o
_X , B2 ¼

ab
o2

_X (9)

To derive from (5) the equation of ‘slow’ motion, it is sufficient to determine the function ao/ _c cosotS. Using formulas
(7), (9) and taking into account that /sin 2otS=0, /cos2 otS=1/2, we find:

ao/ _c cosotS¼
a2b

2
_X (10)

According to this, the equation of ‘slow’ motion (5) may be written as:

€Xþb 1�
a2

2

� �
_XþX ¼ 0 (11)

As is seen, the equation of ‘slow’ motion (11) differs substantially from Eq. (2) obtained by Fidlin [5].
Thus, applying the method of direct separation of motions in its conventional form for the solution of Eq. (1), we have

obtained the incorrect equation of ‘slow’ motion. Therefore, we may conclude that either the method of direct separation of
motions cannot be applied for solving the Eq. (1) at all, or it can be applied, but without one or several assumptions, usually
introduced while solving equations by this method.

2.2. Assessment of validity of the main assumption of vibrational mechanics

In this section we conduct the verification of the possibility of applying the method of direct separation of motions for
the solution of the Eq. (1). This verification is a posteriori, i.e. the solution obtained before in Section 2.1 is used in it. Should
the inaccuracy of this solution be the result of the impossibility of applying the method of direct separation of motions in
the case of the Eq. (1), it would be revealed.

The method of direct separation of motions can be applied if the main assumption of vibrational mechanics—the
assumption that solutions of initial equation have the form (3), is fulfilled. Practically we verify, whether the variable X is
‘‘indeed slow’’ as compared with the variable c. For this purpose, accordingly to [7], we introduce amplitudes X0 and c0 of
the components X and c:

X=X0 ¼Oð1Þ, c=c0 ¼Oð1Þ

We regard the component X as being slow as compared to c if the following condition is held ð _X=X0Þ=ð _c=c0Þ ¼OðeÞ,
where e—small parameter.

Using derived in Section 2.1. expressions for B1 and B2 we obtain: _X ¼OðkÞ, c0=X0 ¼ Oðða=oÞkÞ, _c ¼OðakÞ, where
k(a, b)—is the frequency of ‘slow’ free vibrations, which can be determined from the resulting equation of ‘slow’ motions.
So in our case:

_X

X0
c0=

_c ¼O
k

o

� �
(12)

From Eq. (11) we obtain the following expression for this frequency:

k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b
4

2

1�
a2

2

� �2
s

o1 (13)
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Since the parameters a and b are of order one the main assumption of vibrational mechanics can be written in the form:

1

ooe51 (14)

The condition (14) is always fulfilled, because the frequency o is much larger than one.
For large magnitudes of the parameter a, when a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4=bÞþ2

p
, value of the frequency of ‘slow’ free vibrations k(a, b)

becomes complex, and the ‘slow’ motion in this case is not oscillatory. Hence the main assumption of vibrational
mechanics fulfils automatically.

Therefore, the method of direct separation of motions can be applied for solving the Eq. (1).

2.3. More accurate solution with dependence of ‘fast’ motion on ‘slow’ time taken into account

As has been already mentioned, one of the principal assumptions, usually introduced while solving equations by the
method of direct separation of motions, is the following: while solving the equation of ‘fast’ motion, it is possible to
consider all involved ‘slow’ variables as constants (‘frozen’). Here we conduct the solution of Eq. (1) without employing this
assumption.

As before, while solving Eq. (6) we take into account only the first two terms in series (7), which is justified for ao1.
Now in Eq. (6) we do not consider ‘slow’ velocity _X as constant (‘frozen’), so B1 and B2—are some slow-time t depending
functions. Then we obtain for _c and €c

_c ¼ ð _B1þoB2Þcosot�oB1 sinot (15)

€c ¼�o2B1 cosotþð�2o _B1�o2B2Þsinot (16)

In formulas (15) and (16), we have neglected asymptotically small terms. Their orders of magnitude were assessed
using the expressions (9), i.e. B1 ¼Oð1=oÞ, B2 ¼Oð1=o2Þ, where ob1.

Thus, from the equation of ‘fast’ motions we have obtained two equations: one for terms with factor cosot,
another—with factor sin ot:

�o2B1 ¼ ao _X (17)

�2o _B1�o2B2�obB1 ¼ 0 (18)

In Eqs. (17) and (18) we have neglected asymptotically small terms. Solving these equations, we get

B1 ¼�
a

o
_X (19)

B2 ¼
a

o2
ð2 €Xþb _X Þ (20)

Using the equality

/ _c cosotS¼
1

2
ð _B1þoB2Þ (21)

we obtain

€Xþb _XþX ¼
ao
2
ð _B1þoB2Þ

Now, employing formulas (19) and (20) we get equation of ‘slow’ motions in the form:

1�
a2

2

� �
€Xþb 1�

a2

2

� �
_XþX ¼ 0 (22)

It also can be written as

€Xþb _Xþ
2

2�a2
X ¼ 0 (23)

The obtained equation of ‘slow’ motion is in a good agreement with Eq. (2) for ao1. Moreover, Taylor series expansion
of the function I2

0ðaÞ with order a2 terms retained yields I2
0ðaÞ ¼ 1þða2=2ÞþOða4Þ. The X coefficient in Eq. (23) is exactly the

same 1þða2=2ÞþOða4Þ.
Thus, solving Eq. (1) by the method of direct separation of motions without employing one of the usually introduced

assumptions, we have obtained the equation of ‘slow’ motion, which is correct for ao1.

2.4. Other variants of solving the equation of ‘fast’ motion

In Sections 2.1 and 2.3, we have taken into account only the first two terms in solution (7) of the equation of ‘fast’
motions and stated, that it is justified for ao1. Now we will take into account the first four terms in series (7) and clarify
how this will affect the equation of ‘slow’ motion.



I.I. Blekhman, V.S. Sorokin / Journal of Sound and Vibration 329 (2010) 4936–49494940
Firstly we present the solution, considering the velocity of ‘slow’ motion _X as constant.
For B1 and B2, C1 and C2, since ob1, we obtain following expressions:

B1 ¼�
a

o
1

1þ a2

8

_X , B2 ¼
a

o2

bð64�4a2Þ

ð8þa2Þ
2

_X

C2 ¼�
a2

o
1

8þa2
_X , C1 ¼�

a2

o2

12b
ð8þa2Þ

2
_X (24)

As follows from formulas (7), (24) we find:

ao/ _c cosotS¼ a2 bð32�2a2Þ

ð8þa2Þ
2

_X (25)

As a result, equation of ‘slow’ motion (5) can be written in the form:

€Xþb 1�
a2ð32�2a2Þ

ð8þa2Þ
2

 !
_XþX ¼ 0 (26)

Its solution is still in a poor agreement with solution of Eq. (2) and with results of numerical experiment (see below),
though it is always stable. For ao1 the difference between coefficients _X in Eqs. (26) and (11) is less than 25%.

If we take into account higher harmonics in solution (7), for example cos3ot and sin3ot, it will lead only to
modification of coefficient _X in Eq. (26) of ‘slow’ motion.

The solution of Eq. (6), without considering the velocity of ‘slow’ motion _X as constant and taking into account the first
two harmonics, was also conducted. As a result, we obtained equation of ‘slow’ motion in the form:

€Xþb _Xþ
ð8þa2Þ

2

3a4�16a2þ64
X ¼ 0 (27)

Taylor series expansion of the function I2
0ðaÞ with order a4 term retained, yields I2

0ðaÞ ¼ 1þða2=2Þþð3a4=32ÞþOða6Þ. The
same operation with the X coefficient in Eq. (27) gives exactly the same expression. For ao1 the difference between
coefficients X in Eqs. (27) and (23) is less than 20%.

If we take into account higher harmonics in solution (7) it will lead to further approaching of coefficient X in equation of
‘slow’ motion to I2

0ðaÞ.

3. The range of parameters, in which the solution of the equation of Fidlin oscillator is stable. Reference to numerical
experiments

In his paper [5] Fidlin has concluded, that the equation of ‘slow’ motion (2) corresponds to Eq. (1) for the range of
parameters: a and b are of order one, whereas the frequency is much larger than one ob1. However, it is not always true.
For instance, when a=3 and o=201/s the equation of ‘slow’ motion (2) does not correspond to Eq. (1), because the solution
of Eq. (1) is unstable (this result can be easily obtained in a numerical experiment). The range of parameters, in which the
equation of ‘slow’ motion (2) indeed corresponds to Eq. (1), will be determined in this section.

In fact, the equation of ‘slow’ motion (2) does not correspond to Eq. (1) if Fidlin’s asymptotic approach and the method
of direct separation of motions cannot be applied for solving Eq. (1). To define these cases, verification of the fulfillment of
the main assumption of vibrational mechanics is provided in this section.

As is noted in Section 2.2, verification of the fulfillment of the main assumption of vibrational mechanics is a posteriori.
In this section, to conduct it we use the solution obtained by Fidlin in paper [5]. The solution, obtained by the method of
direct separation of motions in Section 2, is not used.

Expression (12) for the ratio ð _X=X0Þ=ð _c=c0Þ remains valid for Fidlin’s solution. Using Eq. (2) we obtain the following
expression for the frequency of ‘slow’ free vibrations:

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
0ðaÞ�b

2=4
q

(28)

Then the main assumption of vibrational mechanics is transformed to the form:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
0ðaÞ�b

2=4
q

o
oe51 (29)

We choose the parameter e to be equal to 1/5; then for b=1 inequality (29) defines the area under the curve in Fig. 1.
This area defines the range of values of parameters, for which we can apply the method of direct separation of motions

or Fidlin’s asymptotic approach to solve the problem.
Eq. (1) has been solved numerically and the zone of stability of its zero solution has been found. As it was supposed, the

area under the curve in Fig. 1 and obtained zone of stability are almost coinciding.
Therefore, we can conclude, that, if the main assumption of vibrational mechanics is fulfilled, then we can apply the

method of direct separation of motions and Fidlin’s asymptotic approach for the solution of the problem. In this case, we
can consider the equation of ‘slow’ motion (2) to be correct. If it is not fulfilled, then we cannot apply neither Fidlin’s
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Fig. 1. The boundary of the validity of the main assumption of vibrational mechanics in parameters o and a (b=1).
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asymptotic approach, nor method of direct separation of motions for the solution of Eq. (1). Moreover, in that case,
solutions of Eq. (1) are unstable for parameters near the curve shown in Fig. 1. The parametric resonance exists in that case,
as for the classical parametric oscillator (see Section 5).

4. Solving the equation of Fidlin oscillator by the method of direct separation of motions in the case of small dissipation
coefficient modulations

Here we present the analysis of Eq. (1) in the range of parameters, which differs from one in Section 2. In Eq. (1) we
substitute b by mb1, and ao by mb1b, where m40—small parameter, b1�O(1), b�O(1), ob1. In other words, we consider
the case of small dissipation coefficient modulations and equation:

€xþmb1ð1�bcosotÞ _xþx¼ 0 (30)

for which corresponding equations of ‘slow’ and ‘fast’ motions have the form:

€Xþmb1ð
_X�b/ _c cosotSÞþX ¼ 0 (31)

€cþmb1ð
_c�bð _Xþ _cÞcosotþb/ _ccosotSÞþc¼ 0 (32)

4.1. Conventional approximate solution of the equation of ‘fast’ motions

For the beginning, as in Section 2.1, we apply the method of direct separation of motions in its standard form to solve
Eq. (30).

Searching all 2p-periodic solutions of Eq. (32) in form of series

c¼c01þmc1þ � � � , (33)

we obtain, that c01=0, and for c1 the following equation is correct:

€c1þc1 ¼ b1b _Xcosot, (34)

periodic solution of Eq. (34) with constant (‘frozen’) _X have the form:

c1 ¼ B1cosot (35)

For B1 we obtain the following expression:

B1 ¼
1

ð1�o2Þ
b1b _X (36)

For ob1 expression (36) can be simplified as follows:

B1 ¼�
1

o2
b1b _X (37)

To obtain the equation of ‘slow’ motion from (31) it is sufficient to determine the expression mb1b/ _ccosotS. Using
formulas (33), (35) and (37) and taking into account that /sin2otS=0, we find:

mb1b/ _ccosotS¼ 0 (38)

So we obtain the equation of ‘slow’ motion (31) in the following form:

€Xþmb1
_XþX ¼ 0 (39)

As is seen, small dissipation coefficient modulations, under the influence of the employed assumptions, do not affect the
resulting equation of ‘slow’ motion. However, the obtained Eq. (39) is incorrect; this can be confirmed by numerical
experiments.
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4.2. More accurate solution with dependence of ‘fast’ motion on ‘slow’ time taken into account

Now for solving Eq. (30) we apply the advanced method of direct separation of motions, without the assumption that
then solving the equation of ‘fast’ motions we can regard ‘slow’ variables as constants. As before, we search 2p-periodic
solutions of Eq. (32) in form of series (33). As a result we obtain, that c01=0, and c1 is determined from Eq. (34). We search
periodic solution of Eq. (34) in the form

c1 ¼ B1 cosotþB2 sinot (40)

where B1 and B2 are ‘slow’ time depending functions, for which we get following expressions:

B1 ¼�
1

o2
b1b _X , B2 ¼

2

o3
b1b €X (41)

but then

mb1b/ _c cosotS¼
m2

2

b2
1b2

o2
€X

Finally, we obtain equation of slow motion (31) in the form:

1�
m2

2

b2
1b2

o2

 !
€Xþmb1

_XþX ¼ 0 (42)

Modulations of small dissipation coefficient lead to the reducing of the effective mass in resulting equation of ‘slow’ motion.
As in Section 2, we can conclude, that, to solve this problem by the method of direct separation of motion, it is necessary

to abandon the assumption that ‘slow’ variables can be considered as constants then solving the equation of ‘fast’ motions.

5. The solution of the classical equation with oscillating stiffness coefficient by the method of direct separation
of motions

Numerous applied problems, analyzed before [7,8], did not require the dependence of ‘fast’ component on ‘slow’ time to
be taken into account while solving corresponding equations by the method of direct separation of motions. In contrast,
the case of Fidlin oscillator makes it necessary. In this section, we define general conditions, when the advanced
formulation of the method should be employed. For this purpose we consider the classical equation with oscillating
stiffness coefficient.

We examine the following equation, assuming that parameters a and b are of order of one, whereas the frequency is
much larger than one:

€xþb _xþx¼ aoxcosot (43)

Applying the method of direct separation of motions, we obtain the following equations of ‘slow’ and ‘fast’ motions
corresponding:

€Xþb _XþX ¼ ao/ccosotS (44)

€cþb _cþc¼ aoðX cosotþccosot�/ccosotSÞ (45)

The periodic solution of Eq. (45) has the form of the infinite series (7). We take into account only the first two terms in
this solution; this is justified for ao1. Then for B1 and B2 we obtain expressions

B1 ¼
1�o2

ð1�o2Þ
2
þo2b2

aoX, B2 ¼
ob

ð1�o2Þ
2
þo2b2

aoX (46)

Hence, using the condition ob1, we obtain

B1 ¼�
a

oX, B2 ¼
ab
o2

X (47)

So, the equation of ‘slow’ motion (44) appears in the form:

€Xþb _Xþ 1þ
a2

2

� �
X ¼ 0 (48)

Now we check whether it is necessary to reject conventional assumptions for solving this classical equation by the
method of direct separation of motions, or it can be applied in its traditional form.

As before, while solving Eq. (45) we take into account only the first two terms in (7); this is justified for ao1. Now in
the Eq. (45) we do not consider the ‘slow’ variable X to be constant (‘frozen’), so B1 and B2—are some ‘slow’-time t

depending functions. Then we obtain

B1 ¼�
a

o
X, B2 ¼

a

o2
ð2 _XþbXÞ (49)
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To obtain the equation of ‘slow’ motion it is sufficient to determine the expression:

/ccosotS¼
1

2
B1 (50)

However, the formula (49) for the amplitude B1 coincides with the formula (47) obtained before. Therefore, the
dependence of ‘slow’ variables on time in the equation of ‘fast’ motions does not produce any changes in equation of ‘slow’
motions, i.e. for the solution of the classical equation with oscillating stiffness coefficient method of direct separation of
motion can be applied in its conventional form.

The dependence of ‘slow’ variables on time in solving equation of ‘fast’ motion yields only high-order corrections in the
amplitudes of ‘fast’ motion. So, it is necessary only in the case, then terms, containing these amplitudes, play the main role
in resulting equation of ‘slow’ motion.
6. The comparison of the influence of dissipation and stiffness coefficients modulations on the stability of zero solutions
of corresponding equations for various ranges of parameters

6.1. Small dissipation and stiffness coefficients modulations

Firstly, we consider the following classical equation with stiffness coefficients modulations:

€xþbxþmðmc1�dcosotÞx¼ 0 (51)

where m40—small parameter, b, c1 and d are of order of one.
In this case equations of ‘slow’ and ‘fast’ motions have the form:

€Xþb _Xþm2c1X�md/ccosotS¼ 0 (52)

€cþb _cþm2c1c¼ mdðXþcÞcosot�md/ccosotSÞ (53)

We search for all 2p-periodic solutions of Eq. (53) in the form of series

c¼c01þmc1þ � � � , (54)

and obtain c01=0. The function c1 should be found from the following equation:

€c1þb _c1 ¼ dX cosot (55)

Periodic solution with respect to ot of this equation with ‘frozen’ X is

c1 ¼�X
d

o2þb2
cosotþX

b
o

d

o2þb2
sinot (56)

Taking into account expressions (54) and (56) we obtain equation of ‘slow’ motions in the form:

€Xþb _Xþm2 c1þ
d2

2ðo2þb2
Þ

 !
X ¼ 0 (57)

Thereby, in this case modulations in the stiffness coefficient lead to the increase in the effective stiffness of the system,
and do not affect the dissipation coefficient. As a result, for c1o0, in the absence of vibration the motion of mechanical
system, described by Eq. (51), is unstable, but the presence of oscillations produces the stabilization effect. This result
corresponds to the classical problem of stability of the upper (‘overturned’) position of a pendulum under the effect of
vibration of its bracket axis (Stephenson–Kapitza pendulum; see, for example, [7,8]).

Now we find out whether the similar effect exists in the system, described by Eq. (1). In Section 4, we have already
examined the case of small dissipation coefficient modulations (Eq. (30)). Here we find out, can this modulation produce
the stabilization effect in a system, which is unstable without vibration.

First, we consider the equation

€xþmb1ð1�bcosotÞ _xþm2c1x¼ 0 (58)

where m40—small parameter, c1, b1 and b—are of order of one, and still ob1.
We apply the method of direct separation of motions to solve Eq. (58). The dependence of ‘slow’ variables on time is

taken into account in solving the equation of ‘fast’ motions. It yields the equation of the ‘slow’ motion in the form:

1�
m2

2

b2
1b2

o2

 !
€Xþmb1

_Xþm2c1X ¼ 0 (59)

As is seen from Eq. (59), this modulation do not affect the stability of corresponding solution, because m2/o2
51.
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It seems to be interesting to analyze the following equation:

m2m €xþmb1ð1�bcosotÞ _xþx¼ 0 (60)

here m�O(1), all other parameters are the same as before. However, this equation is singularly perturbed, because it
contains a small coefficient in the term €X , and so it deserves more detailed consideration, which lies beyond the scope of
the present paper.
6.2. Strong dissipation and stiffness coefficients modulations

Now we analyze the influence of strong stiffness and dissipation coefficients modulations on the stability of
solution x=0.

To describe the influence of strong modulations of the stiffness coefficient on the stability, it is sufficient to consider the
equation:

€x�kx¼ aoxcosot (61)

where k40. As a result, we obtain that, though the solution of Eq. (61) without modulation is unstable, in some situations
it can become stable due to the effect of modulations. This result is easily obtained by the method of direct separation of
motions. Searching the solution of the equation of ‘fast’ motions in the form (7) and taking into account only the first two
terms in it (it is justified for ao1), we obtain the following equation of ‘slow’ motions:

€Xþ
a2

2
�k

� �
X ¼ 0 (62)

For a242k the zero solution of Eq. (62) is stable. Solving the equation of ‘fast’ motions more accurately and taking into
account the first two harmonics, we get the equation of ‘slow’ motion in the form:

€Xþ
4a2

8þa2
�k

� �
X ¼ 0 (63)

For ð4a2=ð8þa2ÞÞ4k the zero solution of Eq. (63) is stable.
Now we clarify whether the similar effect exists in the system, described by Eq. (1) or resembling, i.e. we consider the

equation:

€x�kx¼ ao _x cosot (64)

where again k40. We apply the method of direct separation of motions for the solution of Eq. (64), taking into account the
dependence of ‘slow’ variables on time, when solving the equation of ‘fast’ motions. Searching the solution of the equation
of ‘fast’ motions in the form (7) and taking into account only the first harmonic (it is justified for ao1), we obtain the
following equation of ‘slow’ motion:

1�
a2

2

� �
€X�kX ¼ 0 (65)

or

€X�
2k

2�a2
X ¼ 0 (66)

The solution of Eq. (66) is always unstable for ao1.
Now, we solve the equation of ‘fast’ motions more accurately, taking into account the first two harmonics in its solution.

Corresponding equation of ‘slow’ motion have the form:

1�
2a2ð16�a2Þ

ð8þa2Þ
2

 !
€X�kX ¼ 0 (67)

or

€X�
ð8þa2Þ

2

3a4�16a2þ64
kX ¼ 0 (68)

Expression ðð8þa2Þ
2
Þ=ð3a4�16a2þ64Þ is positive for all magnitudes of the parameter a, this is why the zero solution of

Eq. (68) is always unstable. If we take into account higher harmonics in the solution of the equation of ‘fast’ motions it will
lead to further approaching of the coefficient X in the equation of ‘slow’ motion to�kI2

0ðaÞ, so its zero solution will always be
unstable.

Thereby, we can conclude, that both small and strong dissipation coefficient modulations do not influence the stability
of the zero solution.
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7. On possible applications of Fidlin’s equation

In this section, we demonstrate several model mechanical systems which are described by Eq. (1).

7.1. Oscillations of a rigid body on a rough surface exposed to two-frequency excitation

We consider an one degree of freedom system shown in Fig. 2 and account for the dry friction between the rigid body
and the rough surface. Horizontal high-frequency force FO cos(Ot+e) and vertical force Fo cos ot, which frequency o is
much smaller than frequency O, are acting at the body. We can replace the force Fo cos ot by the base excitation and
assume, that the surface perform oscillations Ao cos ot in vertical direction, where Ao ¼ Fo=ðmo2Þ. As shown in [7,8], the
dry friction force between the body and the surface transforms into the ‘slow’ viscous friction force due to vibration with
high frequency O. This transformation, since Obo, will take place also with respect to force Fo cos ot. We assume

FOb f ðmgþFoÞ (69)

Then the viscous friction coefficient is determined by the formula [7]

b¼
2

p f
ðmg�Fo cosotÞmO

FO
¼ b1�b2 cosot (70)

Here g is the gravity acceleration, f is the dry friction coefficient, and

b1 ¼
2

p f
m2gO

FO
, b2 ¼

2

p f
FomO

FO
(71)

As a result the motion of the body is described by the equation:

m €xþ½b1�b2 cosot� _xþcx¼ 0 (72)

Eq. (72) can be transformed to the form:

€xþb01 _xþl
2x¼ b02 _x cosot (73)

where l2
¼ c=m, b01 ¼ b1=m¼ 2=p

� �
fmgO=FO, b02 ¼ b2=m¼ 2=p

� �
fFoO=FO.

The form of Eq. (73) is similar to Fidlin’s Eq. (1). However, we assume that the contact between the body and the surface
is permanent, Foomg and, therefore, b14b2. It implies that the _x coefficient in Eq. (73) is always positive, in contrast to
Eq. (1), in which this coefficient is negative for some periods of time.

Firstly, we consider Eq. (73) in the case of strong excitation, when b02=O(o) and l2=O(1). In this case b01=O(o),
because b014b02. Searching the solutions of Eq. (73) in the form of series (7) and taking into account only the first
harmonic in it, for B1 and B2 we obtain expressions (8), in which a is substituted by b02/o, and b by b01. But then
the amplitudes B1 and B2 are magnitudes of the same order: B1 ¼ B2 ¼Oð _X=oÞ. Therefore, if we take into account the
dependence of ‘fast’ variable on ‘slow’ time in corresponding equation of ‘fast’ motions, then it will lead only to
insignificant change of the amplitudes B1 and B2. So in this case it is not necessary. Equation of ‘slow’ motion corresponding
to Eq. (73) has the form (11), i.e. it differs substantially from Eq. (2).

Nevertheless, in the case of small dissipation coefficient modulations, when b01=b02=O(m), l2=O(1), where
m40—small parameter, Eq. (73) is equivalent to Eq. (30). So, equation of ‘slow’ motion corresponding to Eq. (73) has
the form

1�
b2

02

2o2

 !
€Xþb01

_Xþl2X ¼ 0 (74)

7.2. Washer, sliding on a rough surface under the effect of vibration

We consider a rigid rod with a washer of mass m on it, lying on a surface (x, y), as is shown in Fig. 3. The friction between
the washer and the rod is negligibly small, i.e. we assume, that the washer can move freely along the rod. The washer is
connected to the mobile base by a spring with the stiffness c. The rod with the washer and the base is moving along the
axis x with some speed _x. The force N acts on the washer to press it to the surface (x, y). As a result, the dry friction force
between the washer and the surface is generated. So, the motion of the washer along the axis y is governed by the
m

x

)cos( tF

tF cos

c

Fig. 2. Oscillations of a rigid body on a rough surface exposed to two-frequency excitation.
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Fig. 3. Washer, sliding on a rough surface under the effect of vibration.
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equation:

m €yþRyþcy¼ 0 (75)

where Ry is the dry friction force, acting along the axis y. It is defined as

Ry ¼
_y

V
fN (76)

here f is the dry friction coefficient, V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
þ _y2

q
is the magnitude of the velocity of the washer on surface.

We assume that _xb _y, so that Eq. (75) can be written in the form:

m €yþ
_y

9 _x9
fNþcy¼ 0 (77)

Further we consider two different cases. In the first case we assume, that velocity of the washer along axis x is given in
the form:

_x ¼ uþu1 cosot (78)

where ubu1, u40, u140. So we obtain

1
_x
�� �� ¼ 1

u
�

u1

u2
cosot (79)

and Eq. (79) transforms to the form

m €yþ
fN

u
_yþcy¼

fNu1

u2
_y cosot (80)

Eq. (80) is similar to Eq. (1). However, in this case, the _y coefficient, again, in contrast to Eq. (1), is always positive.
Equation of ‘slow’ motions (74) corresponds to Eq. (80) with l2

¼ c=m¼Oð1Þ, b01 ¼ f ðN=ðumÞÞ ¼OðmÞ, b02 ¼ f ðNu1=ðu
2mÞÞ ¼

Oðm2Þ. In this case, b025b01, because ubu1.
In the second case we assume, that the pressing force N have the form:

N¼N0�N1 cosot (81)

and the velocity of the rod with the washer along the axis x is constant _x ¼ u. Then Eq. (77) transforms to the form

m €yþ
fN0

u
_yþcy¼

fN1

u
_y cosot (82)

It is similar to Eq. (1), but in this case the _y-coefficient again is always positive, because the condition N1oN0 ensures
that the washer is never detached from the surface (x, y). Equation of ‘slow’ motion (74) with l2

¼ c=m¼ Oð1Þ,
b01 ¼ f ðN0=ðumÞÞ ¼OðmÞ, b02 ¼ f ðN1=ðumÞÞ ¼ OðmÞ corresponds to Eq. (82); as in Section 7.1, b014b02.

The system considered in this section, can be used, for example, for modeling a car brake system.
We note that the similar equation governs the motion of a solid body at the plane rough surface with a double slope to

the direction of vibration [12, pp. 300–303].
We also take notice of the fact, that in all considered cases vibrational or ‘kinematic’ transformation of the dry friction to

the viscous friction results in the modulation of the dissipation coefficient. We emphasize that in these examples, in
contrast to Eq. (1), these modulations are constrained in the sense that the dissipation coefficient remains positive. In all
likeness, this constrain may be withdrawn for mechanical systems with ‘descending’ dry friction characteristic, and also for
systems relevant to electro- and radio-techniques.

7.3. Linear oscillator with mass modulation

Another interesting system, the equation of motion of which can be similar to Fidlin’s Eq. (1), is a linear oscillator with
time-varying mass [13]. Mass variations can be caused, for example, by water (rain) drops hitting the oscillator. The
equation of motion of this oscillator has the form [13]:

M €y ¼ _Mðw� _yÞ�cyþ f (83)
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here y=y(t) is the displacement of the oscillator, M=M(t) is its time-depending mass, w is the velocity of the drops hitting
the oscillator, c is the stiffness of a spring, f is an external force.

We assume that oscillator mass variations occur harmonically:

M¼M0þmcosot (84)

Then Eq. (83) takes the form

M0 €yþcy¼�mðw� _yÞosinot�m €y cosotþ f (85)

If we assume the amplitude m of the mass variations to be negligibly small with respect to constant component M0,
then Eq. (85) can be written in the form:

M0 €y�mo _y sinotþcy¼ F (86)

where F is total external force. The homogeneous part of Eq. (86) coincides with Eq. (1).
As appears from this section, Eq. (1) can be perceived as a model for systems with oscillating inertia properties. In

addition, an analogy between a system with modulated mass and a system with modulated stiffness, in which the
changing of the effective stiffness is well-known (see Sections 5 and 6), can be easily drawn. Thus, the increase in the
effective stiffness produced due to the dissipation coefficient modulation might be explained by drawing an analogy
between these systems.

However, in our opinion, this explanation is questionable. The equation of motion of linear oscillator with time-varying
mass (83) is similar to the equation with dissipation modulation only because of the presence of the term _Mðw� _yÞ in it. If
this term was absent, then the discussed analogy could not been drawn. Therefore, in our opinion, a system with oscillating
mass cannot be considered as equivalent to a system with oscillating dissipation term. Moreover, in the case of strong
excitation the analogy between a system with modulated mass and a system with modulated stiffness is non-convincing.

In our opinion, the physical explanation of the effect that dissipation coefficient modulation produces the increase in
the effective stiffness deserves detailed discussion.

8. On the comparison of the method of direct separation of motions with asymptotic methods

One of the main results of the paper is the following: the method of direct separation of motions, at least in terms of
Eq. (1), leads to the same results as Fidlin’s asymptotic approach. But the comparison of these methods, in terms of
accuracy, simplicity, and generality is not a part of the scope of the present paper. Apparently, Fidlin’s asymptotic approach
is more complicated then the method of direct separation of motions, and the range of application of the method of direct
separation of motions, with the dependence c on t being taken into account, is not narrower, then of Fidlin’s approach.

The substantiation of the method of direct separation of motions, based on the rigorous theorems of N.N. Bogolubov,
V.M. Volosov and V.I. Morgunov, is given in the book [7]. The general comparison of the method of direct separation of
motions with asymptotic methods, particularly with the multiple scales perturbation method, is provided in the book [8].
The main advantages of the method of direct separation of motions over asymptotic methods can be listed as follows:
1.
 The transformation to the canonical equations, i.e. equations of the first order, is not required.

2.
 Resulting equations of ‘slow’ motions have the form of dynamic equations. So the important classes of so-called

potential on the average dynamical systems, vibratory-smooth systems, systems with ‘fast’ generalized coordinates (in
which the order of equations of ‘slow’ motions is less than the order of initial equations), can be easily marked out.
3.
 The method has simple physical interpretation on each step.

4.
 All simplifications are concentrated in solving corresponding equations of ‘fast’ motions. These equations can be solved

approximately, without bringing in essential error in equations of ‘slow’ motions, because ‘fast’ motions are introduced
into equations of ‘slow’ motions under the sign of averaging.

All these advantages (as well as shortcomings) are described in detail in the book [7].
Certainly, the solution of corresponding equation of ‘fast’ motions by the method of direct separation of motions

become more complicated with the dependence of ‘fast’ variable on ‘slow’ time being taken into account. However, all the
main advantages of the method of direct separation of motions over asymptotic methods, particularly over Fidlin’s
approach, are preserved in the cases, when this challenge has to be met.

9. Conclusions

Linear differential equation of the second order with modulation of the damping coefficient (‘Fidlin oscillator’) was
considered in the present paper. This equation was analyzed in different ranges of parameters, in contrast to book [6]. The
findings reported in this paper are summarized as follows:
�
 It is shown that the method of direct separation of motions can be applied for solving problems concerned with
velocity-dependent high frequency excitation as exemplified in the case of the Fidlin oscillator.
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�

c

To capture dynamics of the Fidlin oscillator, the method of direct separation of motions should be modified. Specifically,
the equation of ‘fast’ motions should be solved more accurately, with the dependence of it solution on ‘slow’ time being
taken into account.

�
 The remarkable, and not yet completely understood from the physical point of view, feature of the Fidlin oscillator is

that the modulation of the dissipation coefficient produces the increase of the effective stiffness of the system with
respect to ‘slow’ loads. However, equally strong high-frequency modulation of the stiffness of the system produces
just the increase of the effective stiffness of the system, while the magnitude of the dissipation coefficient is unaffected.

�
 Although the high frequency stiffness modulations can stabilize an unstable position of a mechanical system

(Stephenson–Kapitza pendulum), it is not the case with the similar modulation of the dissipation coefficient. This
statement holds true both in the case, when the instability is triggered by the negative dissipation coefficient, and in the
cause, when the instability is triggered by the negative stiffness coefficient.

�
 In the situations, when the main assumption of the vibrational mechanics is not fulfilled, modulations of the stiffness

coefficient as well as of the dissipation coefficient can lead to the instability of the system (parametric resonance).

�
 Several mechanical systems, modeled by the Fidlin oscillator, are introduced and discussed.

As a part of conclusions, the Appendix summarizes the considered original equations and the equations of ‘slow’ motion
derived in various assumptions. The ranges of parameters for which these equations are valid are also presented.
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Appendix. The considered equations, the ranges of parameters and the resulting equations of ‘slow’ motion in various
assumptions (MDSM—method of direct separation of motions)
=1, Aðx, _xÞ ¼ ao _x
 a, b�O(1)

0om51; b, b
1
�O(1)

a,b�O(1)

0om51; c1 ,b,d�Oð1Þ

a,k�O(1); k40
M=1

C=1, B=mb
1

M=1, B=0
The considered equation: €xþb _xþcx¼ Að _x ,xÞcosot; ob1

The resulting equation of ‘slow’ motions: M €XþB _XþCX ¼ 0
Values of the coefficients

b, c and of the function
Aðx, _xÞ in the
considered equation
Ranges of the
parameters
Assumptions
employed then solving
corresponding
equation of ‘fast’
motions by the MDSM

(x=X(t)+c(t,ot)
Values of the coefficients M, B and C

in corresponding equation of ‘slow’ motion
ao1
 B¼ b 1� a2

2

� 	
, C=1
_X ¼ const
ao1
B=b, C ¼
2

2�a2
_Xaconst
1oao1.5
B¼ b 1�
a2ð32�2a2Þ

ð8þa2Þ
2

 !
, C=1
_X ¼ const

1oao1.5

B=b, C ¼

ð8þa2Þ
2

3a4�16a2þ64
_Xaconst
b=mb1, c=1,

Aðx, _xÞ ¼ mb1b _x cosot
_X ¼ const
 M=1
_Xaconst

M ¼ 1�

m2

2

b2
1b2

o2
c=1, Aðx, _xÞ ¼ aox
 ao1
X=const

ao1
M=1, B=b,

C ¼ 1þ a2

2

Xaconst
c=m2c1,

Aðx, _xÞ ¼ mdxcosot
X=const
 M=1, B=b, C ¼ m2 c1þ
d2

2ðo2 þb2
Þ

� 	

b=mb1, c=m2c1,

Aðx, _xÞ ¼ mb1b _x cosot
_Xaconst

M ¼ 1�

m2

2

b2
1b2

o2
, B=mb1, C=m2c1
b=0, c=�k, Aðx, _xÞ ¼ aox
 1oao1.5

C ¼

4a2

8þa2
�k
X=const
b=0, c=�k, Aðx, _xÞ ¼ ao _x
 1oao1.5

C ¼�

ð8þa2Þ
2

3a4�16a2þ64
k
_Xaconst
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